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Estimation of contiguity for a monodispersed 
system of spherical particles 

H. H IRA I ,  A. K I T A H A R A ,  S. N A G A T A *  
Government Industrial Research Institute, Kyushu Tosu, Saga 841, Japan 

A new stereological method for the estimation of the contiguity (the degree of contact) for the 
monodispersed system of spherical particles is reported. Since this method is applicable to 
point-like contacts, the contiguity of ceramic particles can be evaluated in a metal matrix 
composite in which the contact is assumed to be point. The contiguity is derived from the 
geometrical calculation of centre-to-centre distance between particles, evaluation of contact, 
and consideration of the geometrical probability that two particles in contact are cut 
simultaneously by a test plane. The contiguity can be expressed by either the number of 
contacts per unit volume or the number of contacts per particle. Applying this method to a 
model material (Shirasu-balloon/aluminium alloy composite), the interrelations between the 
change in the contiguity and some physical properties of the material can be accurately 
explained. 

1. Introduction 
In particle-dispersed composite materials, the contigu- 
ity of dispersed particles can exert significant influence 
on properties such as tensile strength and electrical 
conductivity. There are some well-known methods to 
evaluate the contiguity of grains or particles stereo- 
logically [1]. Most of those methods are concerned 
with the facial contact between the phase(s) of interest, 
however. Therefore, they cannot be applied to point- 
like contacts between rigid particles such as ceramic 
particles in a metal matrix composite, because two 
dimensional observations on a test plane never catch 
the three dimensionally dispersed points, each of 
which has no volume or area. 

Robine et al. [2] reported a method to evaluate the 
number of point-like contacts between monosized 
spherical particles. They introduced a concept of bi- 
particle, and found the coordination number (the 
number of contacts per particle) from a consideration 
of the plane coordinance which is defined as a function 
of the euclidean distance between particle sections on 
a test plane. 

In this article, an approach to estimate the contigu- 
ity for a monodispersed system of spherical particles 
stereologically, i.e. by observing two dimensional test 
section, is reported. The proposed method is based on 
a consideration of the geometrical probability, and 
has potential to evaluate point-like contacts more 
easily. The degree of contact is defined as either the 
number of contacts per unit volume or the number of 
contacts per particle. With an appropriate modifica- 
tion, we apply this quantity to a Shirasu-balloon/ 
aluminium alloy composite (SBAC) to examine the 
relationship between some physical properties of 
SBAC and the degree of contact of Shirasu-balloons. 

2. Contiguity for a monodispersed 
system of spherical particles 

2.1. Estimation of contact from an observation 
of two dimensional section 

As mentioned before, it is generally difficult to catch 
three dimensionally dispersed points of contact by a 
two dimensional section plane through a material. If 
some assumptions are made, however, we can estimate 
such a contiguity from relatively straight-forward geo- 
metrical analysis as follows. 

First, we assume that the particles are spheres with 
the same radius, r o, and are not deformed by contact- 
ing. Then we consider a two dimensional test plane 
through the sample in which the particles assumed 
above are dispersed. On the test plane, circular fea- 
tures of various sizes are seen as in Fig. la. Let the 
sectional radii and the coordinates of the centres of 
circle i and j be r i, rj and (xi, y~), (x j, yj), respectively, 
then the distances (z, z j) between the centres of par- 
ticles and the test plane are written as 

= 2)1/2 5, - q 
(1 )  

zj = (r~ -- r~) '/2 

As the particle centre corresponding to each circular 
feature possibly exists either above or below the test 
plane (as C~ or C'~ in Fig. lb), there are two possible 
centre-to-centre distances ( C i - C j  or C~-Cj )  
between two particles. These two distances are written 
as 

d +- = { ( x ,  - -  x j )  + - -  y j ) 2  

+ (z, ~ zj)2} 1/2 (2) 

where d + and d -  indicate the centre-to-centre dis- 
tance between two particles whose centres are existing 
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Figure 1 (a) Particles observed on a test plane, and (b) their profile 
view which is normal to the test plane. There are two cases of centre- 
to-centre distances (d + and d-  ) between two particles seen on a test 
plane (b). Assume that all particles have the same radius, r o. 

in the same side (C~ - Ci) and in each side (C'~ - C j) of 
the test plane, respectively. I t  is apparent that d + is 
always smaller than d - .  

Now, we can know the probability c u of contact 
between the ith and j th particles by comparing 2r o 
with d +. The theoretical criteria for determining c~j are 
summarized in Table I. If  two particles contact with 
each other, either d + or d -  equals 2r o. Converses 
seem to be not always true. In the case of d -  = 2r o, 
the particles necessarily contact with each other, so 
c u = 1. In the case of d + = 2to, the situation is some- 
what complex. If the centres of particles are in the 
same side to the test plane, they contact with each 
other. But if the centres of particles are in each side of 
the test plane, they do not contact. And the prob- 
ability for the centres of particles to be in the same side 
to the test plane seems to be 0.5. The probability that 
two particles are in each side of the test plane and d + 
= 2ro is negligible, howeVer, comparing with the 

probability that both particles are in the same side to 
the test plane and d + = 2ro. Therefore, unity is as- 
signed to c~; when d + - 2r o. 

The theoretical criteria in Table I seems to be 
scarcely applicable to practical particles, because 
practical particles are not of the same size and truly 
spherical in a strict sense. So, it might be reasonable to 
assume a particle to be interpenetrated by another 
particle when d + or d -  is smaller than 2r o. Such an 
assumption might well simulate practical contacting 
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T A B L E  I Theoretical criteria for determining the probability of 

contact, cu, between two particles 

Condition clj 

d >~ d + > 2r o 0 
d-  > d + = 2r o 1 
d-  > 2r o > d + 0 
~r o = d-  >~ d + 1 

T A B L E  i I  A practical criteria for determining q3 

Condition % 

d- ~> d + > 2r o 0 
d - > 2 r o > ~ d  + 0.5 
2r o t> d-  >~ d + 1 

with some degree of local flattening or coalescence, 
although it means that the volume of the particle 
decreases by contacting. Thus, we introduce a new 
assignment for practical cij as in Table II. In these 
criteria, 0.5 is assigned to cq when 2r o is between d + 
and d - ,  because in this case, the probability for the 
centres of both particles to be in the same side to the 
test plane is considered to be 0.5. 

Using the criteria of Tables I or II, we can assign the 
probability of contact, ci;, for every pair of particles, 
and thus obtain the apparent total number of contacts 
CT by summing up c u for all possible pairs of particles 
as  

N - 1  N 

= Z Z (3) 
i = 1  j = i + l  

where N is the number of particles observed on the 
test plane. 

Next we examine the spatial range within which the 
contacts are estimated with the above method. As 
shown in Fig. 2, the particles which are observed on a 

TP 

'% 

C 

Figure 2 Profile view of particles cut normal to a test plane (TP) and 
through the centre of each particle ( + ). The test plane is shown as a 
bold line. All particles which are cut by the test plane have their 
centres within the distance r o from the test plane. Also, the contact 
point (as point A) must be within the distance r o from the test plane 
if both of participating particles are cut by the test plane. But not all 
the contact points within this range can always be estimated (as the 
case of point B), since both of participating particles are not always 
cut by a test plane simultaneously. 



test plane must  have their centres not  far ther  than  r o 
f rom the test plane. Therefore,  the contacts  es t imated 
with the above  me thod  must  also occur  within the 
distance r o f rom the test plane. But it is noted that  all 
the contacts  within this 2r 0 range cannot  be estimated. 
Such an example  is also shown schematical ly in Fig. 2. 
While the contact  point  A is derived f rom the two 
particles observed on the test plane, the point  B comes 
f rom the contact  of one particle observed and ano ther  
not  observed on the test plane. 

Then, we have to introduce the probabi l i ty  of  the 
detectable contact  occurrence in order  to est imate the 
total  numbe r  of  contacts  occurr ing within the distance 
r o f rom the test plane. 

2.2 P robab i l i t y  o f  the  d e t e c t a b l e  c o n t a c t  
o c c u r r e n c e  

In order  to obta in  the probabil i ty,  P, of  the detectable 
contac t  occurrence,  we have to consider the following 
two kinds of probabili t ies:  (1) the probabi l i ty  PI  for a 
contact  to occur  within the distance r o f rom the test 
plane, and (2) the probabil i ty,  P2, for such a contact  to 
be detected f rom the section of the particles (i.e. the 
probabi l i ty  for both  particles i and j to be cut by the 
same test plane). 

Suppose that  particle j is in contact  with particle i, 
the centre of  par t ic le j  is on the spherical surface radius 
which is 2r o and the centre coincides with that  of 
particle i. And probabil i t ies  P t  and P2 vary depending 
on the distance zz of the centre of particle i f rom the 
test plane (Fig. 3). Because of the symmet ry  of config- 
urat ion,  it is enough to consider the centre of  particle i 
below the test plane only. 

Consul t ing Fig. 3, the probabil i t ies P~ and P2 are 
seen to be expressed as the ratio of  the surface area 
generated f rom rota t ing the arcjoJ3 (the total  of dot ted 
and bold curves) and arc ja j2  (bold curve only) a round  
the z-axis, respectively, to the surface area of sphere 
with radius of 2%. N o w  let us consider the si tuat ion 
shown in Fig. 3c and define angles dO 0, dp~ and qb 2 as in 
the figure, the surface areas S~, $2 (corresponding to 

P t  and P2, respectively) and Sr  (surface area of  the 
sphere of radius 2ro) are 

$I = 8nr 2 s i n 0 d 0  
0 

t Snr sin 0 dO 

$ 2  --~- 1 

0 

S r = 4~(2ro) 2 = 16~r 2 

And from the definitions 

= 87rr2(1 + cos qb0) (4) 

8~ro~(COS ~,~ - c o s  ~ )  

(0 <~ zi < to) 

(ro <-% zi <~ 2ro) 
(5) 

(6) 

F - -  Z i )  
cos qb o = (7) 

F o 

( r  o - -  z,)  
co s  ~b~ - (8) 

2ro 

- (ro + z 3  
cos ~2 - (9) 

2ro 

Put t ing Equat ions  7-9 into Equat ions  4 and 5 and 
dividing them by Equa t ion  6, we obtain  the probabi l -  
ities P1 and P2 at each z~ as 

8~ro(2r0 - zi) zi 
P1 = 16~ro2 = 1 - 2r~- (10) 

8rcr~ 1 
P2 = 16rcr 2 - 2 0 ~< zi < r o (11) 

0 r 0 ~< z~ ~< 2r o 

Since z~ is expected to be distr ibuted uniformly f rom 0 
to 2ro, the probabil i ty ,  P, of the detectable contact  
occurrence is derived f rom P~ and P2 as 

f~ o P2 dzi ro/2 t 

P - ,o  - r o  2 (12) 
~ P1 dzi 

According to the considerat ion above,  we can est imate 
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Figure 3 Sections through both centres of contacting particles i and j and normal to the test plane (bold lines). The traces of the centre of 
particle j make spherical surfaces of radius 2r o. The probability of estimating the contact between particles i and j from the observation of the 
test plane is proportional to the surface area generated by rotating arc JlJ2 (bold curve) around the z-axis. And the probo, bility for contact to 
occur within the distance r o from the test plane is proportional to the surface area generated by rotating arcjoj3 (both bold and broken curves) 
around the z-axis. 
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the real number of contacts within the distance ro from 
the test plane by dividing Cr by P ( = 05). 

Now we can express the degree of contact as 
follows: 

1. The number of contacts per unit volume, C v, is 

Cr 
Cv -- (13) 

2roAP 

where A is the total test area on the section plane. 
2. The number of contacts per particle, C N, is 

2Cv 4CvroA 2Cr 
C N - -- - (14) 

Nv N NP 

where N is the total number of particles observed 
within the test plane and Nv is the number of particles 
per unit volume. 

3. Applications 
3.1. Preliminary considerations prior to 

application 
The reliability of the proposed method was examined 
by Hirai et al. [31. They applied the method for 
estimating the contiguity of a computer simulated 
system of monodispersed spherical particles, and 
proved that the estimated contiguity, Cs, coincides 
with the virtual contiguity of the simulated system. 
They also showed that the estimated contiguity 
through the practical criteria in Table II agrees well 
with that obtained through the theoretical criteria in 
Table I. On the grounds above, we use the criteria in 
Table II to determine the contiguity of practical par- 
ticles. There are, however, two problems which might 
be unfavourable to the direct application of the 
proposed method to practical materials. 

First, the shape of practical particles is not com- 
pletely spherical while the proposed method for the 
evaluation of the contiguity assumes particles to be 
spherical. Therefore, the proposed method may ap- 
proximately be applied to practical systems Of spher- 
ical particles. In such a case, we may use the equivalent 
area diameter (2(Ai/'g) 1/2, where Ai is the sectional 
area of the particle) and gravity centre instead of 
geometrical diameter and geometrical centre for the 
particle seen on a two dimensional test plane. 

Figure 4 Photomicrograph showing microstructure of Shirasu- 
balloon/aluminium alloy composite (SBAC). 
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Second, a system of particles usually has a size 
distribution. The proposed method deals exclusively 
with a monodispersed system of particles. Thus, the 
proposed method may not be applicable to a poIy- 
dispersed system of particles in a strict sense. Accord- 
ing to the principle for the evaluation of the contiguity 
proposed here, however, the existence of smaller par- 
ticles tends to increase the calculated contiguity while 
the existence of larger particles has a tendency to 
decrease the calculated contiguity. Thus, both effects 
might work to cancel o u t  each other. Accordingly, 
when we adopt the mean diameter as a representative 
diameter of polydispersed particles, the obtained 
contiguity would not be so different from the real 
contiguity of the system. 

3.2. Resul ts  of the  appl ica t ion  to SBAC 
We tried to apply the proposed method to evaluate 
the contiguity of Shirasu-balloons (SB) in Shirasu- 
balloon/aluminium alloy composites (SBAC). SB are 
hollow microballoons made from volcanic ash called 
Shirasu. SB sieved between 0.149 and 0.210 mm and 
Al-12%Si alloy were used as dispersed particles and 
as matrix, respectively. SBAC was prepared as follows: 
SB was mixed with powdered Al-12%Si alloy, pre- 
packed in a mould, and pre-heated at 723 K. Then 
molten Al-12%Si alloy at 973 K was poured and 
squeeze-infiltrated into the mixture of SB and A1-12% 
Si alloy powders at about 6.5 MPa. The volume frac- 
tion, Vv, of SB was controlled from 0 to 60% by the 
mixing ratio of SB to Al-12%Si powder. Representat- 
ive microstructure of SBAC is shown in Fig. 4, and 
representative physical properties are also shown in 
Fig. 5a and b, 

As seen in Fig. 4, SB is almost spherical. The round- 
ness (4nAJp 2, where A i and p~ are the sectional area 
and the perimeter length of the section of particle, 
respectively) of SB is measured on the test plane of 
SBAC with a computer-controlled digital image ana- 
lyser, the result is shown in Fig. 6. The average of the 
roundness is about 0.84 and the standard deviation is 
about 0.11. It is known that the roundness of a circle 
measures about 0.90 under the same analyser [4], 
so that SB can well be approximated to spheres. At 
this point, it may be valid to apply the proposed 
method to the estimation of the contiguity of SB in 
SBAC. 

Ten test areas (1.20 mm x 1.28 mm) were selected at 
random from each test plane, and processed by a 
digital image analyser to measure the equivalent area 
diameter and the gravity centre of each image of 
particle. The measured equivalent area diameters were 
first used to know the size distribution of SB by the 
Schwartz-Saltykov's method [5]. The obtained size 
distribution of SB is shown in Fig. 7. It is noticed that 
the frequency of particles of smaller size includes 
larger errors due to the nature of this type of analysis. 
The mean diameter of SB is 0.159 mm and the stand- 
ard deviation is 0.053 mm. 

Based on the mean diameter, the contiguity of SB 
was first calculated for each test area, and was aver- 
aged for each specimen later. The obtained C v and C N 
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Figure 5 Representative physical properties of SBAC in terms of the volume fraction (Vv) of Shirasu-balloons (SB): (a) tensile strength, and 
(b) electrical conductivity. 
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Figure 6 Histogram showing the frequency of the roundness of SB. 
The roundness of each SB is measured on the test plane of SBAC 
with computer-controlled digital image analyser. Total number of 
particles = 1209; mean value of the roundness = 0.838; standard 
deviation of the roundness = 0.11. 
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Figure 7 Histogram showing the size distribution of SB assessed by 
the Schwartz-Saltykov's method [5]. The equivalent area diameter 
obtained by digital image analyser was used as a sectional diameter 
of SB. Total number of particles =2815; mean diameter 
= 0.159 mm; standard deviation of the diameter = 0.053 mm. 

are shown with the volume fraction of SB in SBAC in 
Fig. 8a and b, respectively. It is noticed that both Cv 
and Cu increase linearly with the volume fraction of 
SB in these figures, but beyond 50% of SB the contigu- 
ity increases at a higher rate. This behaviour is con- 
sistent with the changes in some physical properties of 
SBAC shown in Fig. 5: tensile strength (Fig. 5a) and 
electrical conductivity (Fig. 5b). It is obvious that 
tensile strength and electrical conductivity of SBAC 
decreases with increasing SB, because SB damages 
these properties. The volume fraction cannot explain 
the drastic change in property at around 50% SB, but 
the contiguity can. Therefore, it can be said that the 
degree of contact must be one of the parameters which 
plays an important role in the properties of 
metal-particle composite. 

Gurland [1] reported the relations between the 
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Figure 8 Figures showing the relation between 1}he contiguity (Cv or 
Cu) and the volume fraction, l/v, of SB in SBAC. (a) Cv versus Vv; 
(b) C~ versus Vv. 

4199 



number of contacts per particle, CN, of silver and the 
electrical resistivity (reciprocal of electrical conductiv- 
ity) of a silver-Bakelite composite in terms of the 
volume fraction of silver particles. He showed a drastic 
change in the resistivity and CN at about 40 vol % of 
silver, which is different from the change in the electri- 
cal conductivity of SBAC and C N at about 50 vol % of 
SB. The reason for this is as follows: Gurland's con- 
ductors are silver dispersoid while ours are aluminium 
matrices, i.e. 40 vol % means that silver particles begin 
to Contact each other while our 50 vol % means that 
aluminium matrices begin to become discontinuous. 

4. Conclusions 
In this article we introduced a new method to estimate 
the contiguity of a monodispersed system of spherical 
particles, in order to evaluate point-like contacts. First 
we calculated the three dimensional centre-to-centre 
distances of particles, compared them with the dia- 
meter of the particle to assign the probability of con- 
tact for each pair of particles, and summed them up to 
obtain the apparent total number of contacts within 
the distance r o (radius of the particle) from the test 
plane. Next we derived the probability for the contacts 
to be detected from this method. Dividing the appar- 
ent total number of contacts by the probability, to get 
the real number of contacts within the distance r o from 
the test plane, we could express the contiguity in 
either: (a) the number of contacts per unit volume, or 

(b) the number of contacts per particle. With appropri- 
ate modifications, we applied this procedure to 
Shirasu-balloon/aluminium alloy composite and con- 
cluded that the contiguity is one of the more useful 
parameters to describe some properties of metal 
matrix composites. 
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